Effects of Hydrothermal Depolymerization and Enzymatic Hydrolysis of Algae Biomass on Yield of Methane Fermentation Process
نویسندگان
چکیده
Our study was undertaken in order to determine the effects of preliminary hydrothermal depolymerization and enzymatic hydrolysis of macroalgae biomass originating from the Vistula Lagoon on yield of the methane fermentation process in terms of quantity and quality of produced biogas. The process of enzymatic hydrolysis was conducted with a mixture of enzymes: Cellulast 1.5 L, Novozym 188, and Hemicellulase. In turn, the process of hydrothermal depolymerization was run for 120 minutes at 200oC under a pressure of 1.7 MPa. The processed plant substrate was next subjected to mesophilic fermentation. The application of enzymatic hydrolysis contributed to an increased quantity of and improved qualitative composition of biogas pro-
منابع مشابه
Surfactant-Aided Phosphoric Acid Pretreatment to Enable Efficient Bioethanol Production from Glycyrrhiza Glabra Residue
Glycyrrhiza glabra residue (GGR) was efficiently subjected to concentrated phosphoric acid (PA) pretreatment with/without surfactant assistance, and promising results were obtained following separate enzymatic hydrolysis and fermentation (SHF) of the biomass. Pretreatment was carried out using 85 % PA either at 50 or 85 °C with 12.5 % solid loading for 30 min. In parallel experiments, ...
متن کاملHydrothermal pretreatment conditions to enhance ethanol production from poplar biomass.
Pretreatment has been recognized as a key step in enzyme-based conversion processes of lignocellulose biomass to ethanol. The aim of this study is to evaluate two hydrothermal pretreatments (steam explosion and liquid hot water) to enhance ethanol production from poplar (Populus nigra) biomass by a simultaneous saccharification and fermentation (SSF) process. The composition of liquid and solid...
متن کاملEfficient ethanol production from dried oil palm trunk treated by hydrothermolysis and subsequent enzymatic hydrolysis
BACKGROUND Oil palm trunk (OPT) is a valuable bioresource for the biorefinery industry producing biofuels and biochemicals. It has the distinct feature of containing a large amount of starch, which, unlike cellulose, can be easily solubilized by water when heated and hydrolyzed to glucose by amylolytic enzymes without pretreatment for breaking down the biomass recalcitrance. Therefore, it is su...
متن کاملParticulate Size of Microalgal Biomass Affects Hydrolysate Properties and Bioethanol Concentration
Effective optimization of microalgae-to-bioethanol process systems hinges on an in-depth characterization of key process parameters relevant to the overall bioprocess engineering. One of the such important variables is the biomass particle size distribution and the effects on saccharification levels and bioethanol titres. This study examined the effects of three different microalgal biomass par...
متن کاملPretreatment Impact on Biomethanation of Lignocellulosic Waste
Lignocelluloses are often a major or sometimes the sole components of different waste streams from various industries, forestry, agriculture and municipalities. Hydrolysis of these materials is the first step for either digestion to biogas (methane) or fermentation to ethanol. However, enzymatic hydrolysis of lignocelluloses with no pre-treatment is usually not so effective because of high stab...
متن کامل